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Abstract
An analytical solution for the scattering of an acoustic Bessel beam of any
order by a deformable sphere centered on the beam is used to calculate the
acoustic radiation force acting along the wave propagation axis. Situations
are noted where, even in the absence of absorption, the radiation force of
a high-order Bessel beam acting on the sphere is opposite to the direction
of beam propagation. In the present research, the cases of a fluid and solid
elastic spheres are considered with particular emphasis on how the mechanical
properties and resonances of spheres as well as the beam parameters affect the
negative radiation force. Conditions for the negative attracting force on hexane
(fluid), aluminum and gold spheres are established, which help in designing
acoustic tweezers operating with high-order Bessel beams of progressive waves
for potential applications in particle entrapment and manipulation.

PACS numbers: 43.20.−f, 43.25.−x, 43.25.Qp, 43.25.Uv, 43.80.Ev, 47.35.Rs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern research using light Bessel beams has found breakthrough applications in the field
of plasma physics [1], optics [2–5] for particle manipulation and entrapment [6, 7] and
other fields, using the force of electromagnetic radiation [8–11]. Ideal Bessel beams are
mathematical solutions of the Helmholtz equation that possess an azimuthal phase term of
form exp(±im φ), where m is the order of the beam and φ is the phase. Due to this property,
such beams carry an orbital angular momentum that can be transferred to transparent particles
of finite dimensions and set them into rotation [12]. Furthermore, Bessel beams do not
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suffer from the diffractive nature of light. This property is a consequence of the way in
which the beam depends on the spatial coordinates [13]. One additional property is their
self-reconstruction ability [14]. Because the beam can be decomposed into a number of plane
waves incident on an object placed in the center of the beam and traveling on the surface
of a cone, the waves forming the beam propagate along the outside of the cone and hence
are slightly affected by the diffraction of the object at the center. A high-order Bessel beam
(HOBB) is therefore capable of retaining a tight focus on long sections of the beam. It is
also able to resist against amplitude and phase distortions, and its transverse amplitude profile
regenerates after the obstruction.

Similarly, in the field of acoustics, Bessel beams have therefore provided an attractive
alternative to using Gaussian beams in a number of applications [15–22]. Recent theoretical
research is currently investigating the feasibility of trapping spherical particles in the field of
a Bessel beam [23–26]. However in all those prior studies, the beam was proportional to the
zero-order Bessel function of the first kind J0. Such a beam does not possess an azimuthal phase
modulation (m = 0). Moreover, it has a bright central maximum intensity [3, 27], whereas a
HOBB having a beam profile proportional to the Bessel functions Jm of the mth order possesses
an axial phase singularity and hence has a non-diffracting dark central core (amplitude null).
Due to this property, a HOBB is labeled as a ‘hollow’ or ‘doughnut-shape’ beam. The aim of
this research is therefore directed toward extending the previous investigation on the radiation
force experienced by a rigid sphere [26] to the case of elastic and fluid spheres immersed in
non-viscous water and placed in a HOBB of progressive waves. The beam considered here
has a phase ramp equal to exp(±im φ). The total acoustic scattering field is solved first and
then used to evaluate the radiation force. General properties and examples illustrating the
theoretical analysis are discussed.

2. Acoustic radiation force of a HOBB on an elastic sphere

A HOBB of axisymmetric progressive waves is a solution of the linear Helmholtz equation
for which the incident (complex) acoustic velocity potential may be expressed as [3, 27]

�
(inc)
Jm,p = �0 ei(kzz−ωt)Jm(krR) e±imφ, (1)

where �0 is the amplitude, kz = k cos β and kr = k sin β are the axial and radial wave-
numbers, respectively, k = √

k2
z + k2

r = ω/c = 2π/λ is defined as the wave number of the
incident HOBB, ω is the angular frequency, c is the speed of sound in the fluid medium, λ is
the wavelength of the acoustic radiation making up the HOBB, β is the half-cone angle formed
by the wave-number k relative to the axis of wave propagation, and R, φ and z are the radial,
azimuthal and axial components respectively. In the present theoretical analysis, the fluid is
considered ideal (with no absorption) so that thermo-viscous effects and acoustic streaming
are disregarded. However, analytical studies on the radiation forces of plane and spherical
acoustic waves in thermo-viscous fluids [28–31] indicate that there are various situations
where corrections to the radiation force may be significant especially in progressive waves.
These studies generally support the conjecture that thermo-viscous corrections will be small
when the oscillating viscous boundary layer thickness is much less than the sphere’s radius.
It is assumed that this condition holds for the situation considered here and the theory is still
applicable in this limit.

In a system of spherical coordinates (r, θ , φ), the incident velocity potential may be
expanded in a generalized Rayleigh wave series as [27, 32, 33]
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�
(inc)
Jm,p = �0 ei(kzr cos θ−ωt)Jm(krr sin θ) e±imφ,

= �0 ei(kr cos β cos θ−ωt)Jm(kr sin β sin θ) e±imφ,

= �0 e−iωt

∞∑
n=m

(n − m)!

(n + m)!
(2n + 1)i(n−m)jn(kr)P m

n (cos θ)P m
n (cos β) e±imφ. (2)

The series in equation (2) is obtained by expanding the cylindrical Bessel function in
a generalized partial wave series using the addition theorem for the associated Legendre
functions (see page 412–413 and equation (82) in [32]—note the typeset error in the series
that should start from n = m to infinity). Equation (2) describes the velocity potential
of a generalized HOBB incident upon a sphere, whose center is located at a distance r
from an observation point, jn(·) is the spherical Bessel function of order n, P m

n (·) are the
associated Legendre functions and θ is the scattering angle relative to the beam axis of wave
propagation z.

When the incident wave, expressed by equation (2), acts on a sphere, the scattered
spherical wave in the fluid surrounding the sphere may be expressed in terms of the spherical
Hankel function of the first kind as follows [33]:

�
(sc)
Jm,p = �0 e−iωt

∞∑
n=m

(n − m)!

(n + m)!
(2n + 1)i(n−m)h(1)

n (kr)AnP
m
n (cos θ)P m

n (cos β) e±imφ, (3)

where h(1)
n (·) denotes the spherical Hankel function of the first kind, and the dimensionless

(complex) scattering coefficients An = (αn + iβn) for each partial wave are determined from
the following boundary condition at the non-viscous water-elastic sphere interface: (i) the
pressure (or velocity, respectively) in the fluid equals the normal component of stress in
the solid at the interface, (ii) the normal (radial) component of displacement (or velocity,
respectively) of the fluid must be equal to the normal component of displacement (or velocity,
respectively) of the solid at the interface and (iii) the tangential components of shearing stress
must vanish at the surface of the solid (since the exterior fluid medium is considered to be non-
viscous). These functions depend on the sphere’s material parameters such as the longitudinal
sound speed cL = √

(λ + 2μ)/ρs, the shear or transverse sound speed cT = √
μ/ρs, where

λ and μ are the elastic and shear moduli, and the mass densities of both the fluid ρ and the
sphere ρs. These coefficients are given in the appendix of [33] for elastic spheres.

From equations (2) and (3), the total (incident + scattered) velocity potential field is
expressed by

�
(t)
Jm,p = �0 e−iωt

∞∑
n=m

(n − m)!

(n + m)!
(2n + 1)i(n−m)(Un + iVn)P

m
n (cos θ)P m

n (cos β) e±imφ, (4)

where Un and Vn are given by the following equations:

Un = (1 + αn)jn(kr) − βnyn(kr), Vn = βnjn(kr) + αnyn(kr), (5)

where the function yn(·) is the spherical Bessel function of the second kind, also known as the
Neumann function.

The acoustic radiation force on the elastic sphere caused by a harmonic wave is defined
as a time-averaged quantity over the period T, and is calculated by integrating the mean
excess pressure over the surface of the sphere. Since the force is evaluated with accuracy up
to second-order terms, it is therefore sufficient to integrate second-order quantities over the
surface of the elastic sphere at rest. With accuracy up to second-order terms in the excess of
pressure, the averaged force on the elastic sphere may be expressed as [34]

〈F〉 =
〈∫∫

s

L n dS

〉
T

−
〈∫∫

s

ρv(1)vn dS

〉
, (6)
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where

L = (ρ/2)
∣∣∇(

�
(t)
Jm,p

)(1)∣∣2 − (ρ/2c2)
[
∂t

(
�

(t)
Jm,p

)(1)]2

= K − U (7)

is the Lagrangean energy density, ∂t = ∂/∂t, �
(t)
Jm,p = Re

[
�

(t)
Jm,p

]
, the superscript (1) denotes

first-order quantities and n is the outward-pointing unit normal vector of dS = r2 sin θ dθ dφ.

Denoting the first-order fluid particle velocity v(1) = vnn + vt t, where t is the unit tangential
vector of dS, the two components of v(1) are given in terms of

(
�

(t)
Jm,p

)(1)
as vn = −∂r

(
�

(t)
Jm,p

)(1)

and vt = −∂θ

(
�

(t)
Jm,p

)(1)
/r respectively. Then the components of n and t in the direction of

the incident waves are cos θ and −sin θ respectively.
In the direction of wave propagation (axial z-direction), the radiation force on the sphere

can therefore be expressed as

〈Fz〉Jm,p = 〈Fr〉Jm,p + 〈Fθ 〉Jm,p + 〈Fφ〉Jm,p + 〈Fr,θ 〉Jm,p + 〈Ft 〉Jm,p, (8)

where

〈Fr〉Jm,p = (−a2ρ/2)

〈∫ 2π

0

{∫ π

0

[
∂r

(
�

(t)
Jm,p

)(1)] 2

r=a
sin θ cos θ dθ

}
dφ

〉
,

〈Fθ 〉Jm,p = (ρ/2)

〈∫ 2π

0

{∫ π

0

[
∂θ

(
�

(t)
Jm,p

)(1)] 2

r=a
sin θ cos θ dθ

}
dφ

〉
,

〈Fφ〉Jm,p = (ρ/2)

〈∫ 2π

0

{∫ π

0

[
∂φ

(
�

(t)
Jm,p

)(1)] 2

r=a
cot θ dθ

}
dφ

〉
,

〈Fr,θ 〉Jm,p = (aρ)

〈∫ 2π

0

{∫ π

0

[
∂r

(
�

(t)
Jm,p

)(1)]
r=a

[
∂θ

(
�

(t)
Jm,p

)(1)]
r=a

sin2 θ dθ

}
dφ

〉
,

〈Ft 〉Jm,p = (−a2ρ/2c2)

〈∫ 2π

0

{∫ π

0

[
∂t

(
�

(t)
Jm,p

)(1)] 2

r=a
sin θ cos θ dθ

}
dφ

〉
. (9)

The total velocity potential field given in equation (4) may be rewritten as

�
(t)
Jm,p = Re

[
�

(t)
Jm,p

] = �0

∞∑
n=m

(2n + 1)Rm
n P m

n (cos θ), (10)

where Rm
n = Re

[
in(Un(kr) + iVn(kr))m

n,p e−iωt
]

and m
n,p = i−m (n−m)!

(n+m)! P
m
n (cos β) e±imφ.

Substituting equation (10) into equation (9), manipulating the results using the properties
of the associated Legendre functions (equations (68) and (72) in [35]) and the time average of
a product [36], and denoting by E = ρk2 |�0|2/2 the characteristic energy density, the final
expression for the axial radiation force given by equation (8) is simplified and expressed by

〈Fz〉Jm,p = YJm,p ScE, (11)

where Sc = πa2 is the cross-sectional area. The dimensionless factor YJm,p is defined as the
radiation force function for a HOBB of progressive waves, which is the radiation force per
unit energy density and unit cross-sectional surface. Its expression is given by

YJm,p = − 4

(ka)2

∞∑
n=m

⎧⎨
⎩

(n − m + 1)!

(n + m)!
[αn + αn+1 + 2(αnαn+1 + βnβn+1)]

×P m
n (cos β)P m

n+1(cos β)

⎫⎬
⎭, (12)

where coefficients αn and βn are the real and imaginary parts of the scattering coefficients An

given in the appendix of [33].
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Figure 1. The 2D plots where YJm,p are computed by equation (12) to be negative are shown as
‘islands’ bounded by a contour at YJm,p = 0. The plots are computed for zero-(YJ0,p), first-(YJ1,p),
second-(YJ2,p) and third-(YJ3,p) order Bessel beams for an aluminum sphere immersed in water.
One particularly notices the appearance of enlarged ‘island’ areas over which YJm,p is negative for
HOBBs (m > 0). Note that the amplitude scale bar changes when the order of the HOBB increases
from m = 0 to m = 3.

3. Numerical results and discussion

Example calculations for the radiation force function as given by equation (12) are initially
evaluated for elastic aluminum (ρs,Al = 2700 kg m−3, cL,Al = 6420 m s−1, cT,Al = 3040 m s−1)
and gold (ρs,Au = 19 300 kg m−3, cL,Au = 3240 m s−1, cT,Au = 1200 m s−1) spheres immersed
in water (ρ = 1000 kg m−3, c = 1500 m s−1). A MATLAB [37] code is constructed to
calculate the scattering coefficients as well as the acoustic radiation force function versus
the non-dimensional frequency ka, the half-cone angle β and the order m of the HOBB. The
computations are performed on a Pentium 4 personal computer with the maximum index N
(=30) in the series in equation (12) to largely exceed ka to ensure proper convergence in
the higher ka range. The 2D plots of the radiation force function YJm,p are computed in

the range
{ 0�ka�10

60◦�β�90◦. The computational increment of �ka = 10−3 is used for an adequate

detection of the resonance peaks. As an initial test, calculations for YJm,p are performed
for the case of a plane wave (m = 0, β = 0) and a zero-order Bessel progressive wave
(m = 0), which show excellent agreement with previous investigations involving plane wave
illumination [38] and zero-order Bessel beams [23].

The YJm,p plots for an aluminum sphere in water are shown in figure 1 for a Bessel beam
of zero-(YJ0,p), first-(YJ1,p), second-(YJ2,p) and third-(YJ3,p) orders, respectively. Only the

5
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Figure 2. The same as in figure 1, but for a gold sphere immersed in water. One particularly
notices the appearance of sharp ‘islands’ (versus ka) over which the YJm,p plots are negative. Gold
spheres immersed in water are known to exhibit successive sharp resonances when subjected to
incident acoustic plane waves. In the cases shown here, resonances are extremely sensitive to the
mechanical properties of the object under test as well as the HOBB parameters. Note that the
amplitude scale bar changes when the order of the HOBB increases from m = 0 to m = 3.

‘islands’ over which the radiation force function is negative for specific values of ka and β are
shown. For m = 1, one particularly notices the sharp ‘island’ (for ka ≈ 7.3) over which the
YJ1,p plot is negative. In addition, the sharp island is suppressed and a decrease in the areas of
the remaining islands is also noticed as the order of the Bessel beam increases (from m = 1
to 3).

Figure 2 shows the YJm,p plots for a gold elastic sphere immersed in water. One particularly
notices the sharp ‘islands’ (versus ka) over which YJm,p plots are negative. This typical
example shows additional features; gold spheres immersed in water are known to exhibit
successive sharp resonances when subjected to incident plane acoustic waves [39]. Resonances
are extremely sensitive to the mechanical properties of the object under test, and they can be
manifested as maxima and minima peaks [40]. To provide a theoretical explanation of
this phenomenon, it is essential to introduce the concept of the scattering cross-section that
characterizes the scattering strength of the elastic sphere, thus the radiation force. When the
incident HOBB strikes the elastic sphere, it generates a surface wave that is propagated on its
surface [41]. This wave decays progressively and reradiates a bulk wave in the fluid medium
surrounding the sphere. The bulk wave interferes with the outer surface wave resulting in
maxima and minima peaks in the resonance spectrum. Hence, when bulk waves are out of
phase with the outer surface wave, resonance appears as minima instead of maxima peaks in
the total scattering cross section curves. Moreover, the width of any resonance peak is related
to the time which surface waves spend inside the sphere to be transformed to bulk waves. This

6
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Figure 3. The same as in figure 1, but for an ideal fluid hexane sphere immersed in water. The
multiple number of islands over which the YJm,p plots are negative versus figures 1 and 2 is
particularly noticeable. As the order of the Bessel beam increases, the negative radiation force
function amplitude decreases. In addition, as ka and β increase, the areas over which the YJm,p

plots are negative decrease as well. Note that the amplitude scale bar changes when the order of
the HOBB increases from m = 0 to m = 3.

period is known as the ‘dwell time’ [42] in optical resonance scattering. So, for sharp peaks,
surface waves are rapidly attenuated to create bulk waves.

Figure 3 shows the YJm,p plots for an ideal fluid hexane (ρs,C6H14 =
656 kg m−3, cL,C6H14 = 1078.5 m s−1) sphere immersed in water in the range

{ 0�ka�10
40◦�β�90◦.

In an ideal fluid sphere, shear wave propagation is absent, and therefore cT,C6H14 = 0. The plot
YJ0,p shows excellent agreement with a prior study dealing with the interaction of a zero-order
Bessel beam with a hexane sphere in water [23]. The multiple number of islands over which
the YJm,p plots are negative is also noticeable. As the order of the Bessel beam increases, the
negative radiation force function amplitude decreases. In addition, as ka and β increase, the
areas over which the YJm,p plots are negative decrease as well.

Further mathematical analysis of equation (12) shows the direct dependence on the
associated Legendre functions P m

n (cos β). It is therefore convenient to define β(n,m) as the
root(s) of the associated Legendre functions P m

n (cos β(n,m)) = 0, which are listed in table 1,
for 0◦ < β(n,m>0) < 90◦, and n = 3, . . . , 10. The specific angles β(n,m) are associated with the
nth partial waves. Suppressing the contribution of a particular resonance to the radiation force
function is therefore attainable by appropriate selection of the half-cone angle β to correspond
to β(n,m). This has been confirmed in suppressing the hexapole resonance (n = 3, m = 0) of
a polyethylene elastic sphere [25] placed in zero-order Bessel beam tweezers. The extension
for the case of a HOBB by judiciously selecting the half-cone angle to correspond to a root of
P m

n (cos β(n,m)) = 0 is therefore feasible.

7
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Table 1. Roots of the associated Legendre functions P m
n (cos β(n,m)) = 0. Only the roots

0◦ < β(n,m〉0) < 90◦ are listed.

n m 	= 0 β (◦) n m 	= 0 β (◦)

3 1 63.4349 42.3729
4 1 49.1066 61.45
4 2 67.7923 80.4865
5 1 40.0880 9 2 31.1958

73.4273 51.143
5 2 54.7356 70.6322
5 3 70.5287 9 3 39.1463
6 1 33.8782 59.9395

62.0404 80.0285
6 2 45.9929 9 4 47.2657

75.4891 69.0589
6 3 58.5178 9 5 55.8163
6 4 72.4515 78.8691
7 1 29.3385 9 6 65.1601

53.7222 9 7 75.9637
77.9187 10 1 20.9325

7 2 39.6949 38.3270
65.1076 55.5813

7 3 50.1602 72.7969
76.9331 10 2 28.1872

7 4 61.2894 46.2065
7 5 73.8978 63.8046
8 1 25.8737 81.2785

47.3758 10 3 35.3022
68.7082 54.0374

8 2 34.9306 72.1116
57.2751 10 4 42.4925
79.1243 62.0370

8 3 43.9550 80.7391
67.3394 10 5 49.9406

8 4 53.3157 70.4369
78.0169 10 6 57.863

8 5 63.4349 79.5619
8 6 75.0367 10 7 66.5867
9 1 23.1419 10 8 76.7373

4. Summary

An analytical expression for the radiation force function of a HOBB of progressive waves
incident upon submerged elastic and fluid spheres placed along the waves’ axis is derived.
The analysis is based on solving the problem of acoustic scattering that is used to evaluate
the force of a HOBB having an azimuthal dependence on phase. With appropriate selection
of the dimensionless frequency ka, the half-cone angle β and the order m of the HOBB, the
force exerted on the sphere is a force of attraction. The ability to trap or pull back toward the

8



J. Phys. A: Math. Theor. 42 (2009) 245202 F G Mitri

source of a single HOBB may be therefore attainable. In addition, specific half-cone angles
β(n,m) judiciously chosen may be used for suppressing selective resonances corresponding to
the contribution of nth partial waves. These conditions are important in designing acoustical
tweezers operating with HOBBs of progressive waves in various fields of applications.

References

[1] Fan J, Parra E, Alexeev I, Kim K Y, Milchberg H M, Margolin L Y and Pyatnitskii L N 2000 Phys. Rev.
E 62 R7603

[2] Bouchal Z 2003 Czech. J. Phys. 53 537
[3] Mcgloin D and Dholakia K 2005 Contemp. Phys. 46 15
[4] Dholakia K and Lee W M 2008 Adv. At. Mol. Opt. Phys. 56 261
[5] Grier D G 2003 Nature 424 810
[6] Garces-Chavez V, Mcgloin D, Melville H, Sibbett W and Dholakia K 2002 Nature 419 145
[7] Garces-Chavez V, Roskey D, Summers M D, Melville H, Mcgloin D, Wright E M and Dholakia K 2004 Appl.

Phys. Lett. 85 4001
[8] Ashkin A 1970 Phys. Rev. Lett. 24 156
[9] Klima R and Petrzilka V A 1975 J. Phys. A: Math. Gen. 8 829

[10] Klima R and Petrzilka V A 1978 J. Phys. A: Math. Gen. 11 1687
[11] Ashkin A 1997 Proc. Natl Acad. Sci. 94 4853
[12] Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S, Arlt J and Dholakia K 2002 J. Opt. B 4 S82
[13] Lopez-Mariscal C and Gutierrez-Vega J C 2007 Am. J. Phys. 75 36
[14] Bouchal Z, Wagner J and Chlup M 1998 Opt. Commun. 151 207
[15] Hsu D K, Margetan F J and Thompson D O 1989 Appl. Phys. Lett. 55 2066
[16] Campbell J A and Soloway S 1990 J. Acoust. Soc. Am. 88 2467
[17] Lu J Y, Song T K, Kinnick R R and Greenleaf J F 1993 IEEE Trans. Med. Imaging 12 819
[18] Nagai K, Monma H and Mizutani K 1993 Japan. J. Appl. Phys. 1 32 2295
[19] Lu J Y 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 181
[20] Masuyama H, Yokoyama T, Nagai K and Mizutani K 1999 Japan. J. Appl. Phys. 1 38 3080
[21] Stepanishen P R 1999 J. Acoust. Soc. Am. 105 1493
[22] Fox P D and Holm S 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 85
[23] Marston P L 2006 J. Acoust. Soc. Am. 120 3518
[24] Mitri F G 2008 Ann. Phys. 323 1604
[25] Mitri F G and Fellah Z E A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2469
[26] Mitri F G 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1059
[27] Mitri F G 2008 Ann. Phys. 323 2840
[28] Doinikov A A 1997 J. Acoust. Soc. Am. 101 713
[29] Doinikov A A 1997 J. Acoust. Soc. Am. 101 722
[30] Doinikov A A 1997 J. Acoust. Soc. Am. 101 731
[31] Danilov S D and Mironov M A 2000 J. Acoust. Soc. Am. 107 143
[32] Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill)
[33] Mitri F G 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1100
[34] Yosioka K and Kawasima Y 1955 Acoustica 5 167
[35] http://Mathworld.Wolfram.Com/Legendrepolynomial.Html
[36] Temkin S 2001 Elements of Acoustics (Melville, NY: Acoustical Society of America)
[37] Matlab http://www.mathworks.com/
[38] Hasegawa T and Yosioka K 1969 J. Acoust. Soc. Am. 46 1139
[39] Chivers R C and Anson L W 1982 Ultrasonics 20 25
[40] Mitri F G and Chen S G 2005 Phys. Rev. E 71 016306
[41] Uberall H 1973 Phys. Acoust. 10 1
[42] Lagendijk A and Van Tiggelen B A 1996 Phys. Rep. 270 143

9

http://dx.doi.org/10.1103/PhysRevE.62.R7603
http://dx.doi.org/10.1023/A:1024802801048
http://dx.doi.org/10.1080/0010751042000275259
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01007
http://dx.doi.org/10.1063/1.1814820
http://dx.doi.org/10.1103/PhysRevLett.24.156
http://dx.doi.org/10.1088/0305-4470/8/5/018
http://dx.doi.org/10.1088/0305-4470/11/8/028
http://dx.doi.org/10.1073/pnas.94.10.4853
http://dx.doi.org/10.1119/1.2359001
http://dx.doi.org/10.1016/S0030-4018(98)00085-6
http://dx.doi.org/10.1063/1.102107
http://dx.doi.org/10.1121/1.400087
http://dx.doi.org/10.1109/42.251134
http://dx.doi.org/10.1143/JJAP.32.2295
http://dx.doi.org/10.1109/58.658328
http://dx.doi.org/10.1143/JJAP.38.3080
http://dx.doi.org/10.1121/1.426689
http://dx.doi.org/10.1109/58.981386
http://dx.doi.org/10.1121/1.2361185
http://dx.doi.org/10.1016/j.aop.2008.01.011
http://dx.doi.org/10.1109/TUFFC.954
http://dx.doi.org/10.1016/j.aop.2008.06.008
http://dx.doi.org/10.1121/1.418035
http://dx.doi.org/10.1121/1.418036
http://dx.doi.org/10.1121/1.417961
http://dx.doi.org/10.1121/1.428346
http://Mathworld.Wolfram.Com/Legendrepolynomial.Html
http://www.mathworks.com/
http://dx.doi.org/10.1121/1.1911832
http://dx.doi.org/10.1016/0041-624X(82)90060-9
http://dx.doi.org/10.1103/PhysRevE.71.016306
http://dx.doi.org/10.1016/0370-1573(95)00065-8

	1. Introduction
	2. Acoustic radiation force of a HOBB on an elastic sphere
	3. Numerical results and discussion
	4. Summary
	References

